Накопители на жёстких дисках

Содержание

Накопители на жёстких дисках

Существует множество типов накопителей на жестких дисках, но практически все они состоят из одних и тех же основных узлов. Конструкции этих узлов, а также качество используемых материалов могут различаться, но их основные рабочие характеристики и принципы функционирования одинаковы. Основные элементы конструкции типичного накопителя на жестком диске (см. рисунок ниже) перечислены ниже:

  • диски;
  • головки чтения/записи;
  • механизм привода головок;
  • двигатель привода дисков;
  • печатная плата со схемами управления;
  • кабели и разъемы;
  • элементы конфигурации (перемычки и переключатели).

Диски, двигатель привода дисков, головки и механизм привода головок обычно размещаются в герметичном корпусе, который называется HDA (Head Disk Assembly — блок головок и дисков). Обычно этот блок рассматривается как единый узел; его почти никогда не вскрывают. Прочие узлы, не входящие в блок HDA (печатная плата, лицевая панель, элементы конфигурации и монтажные детали), являются съемными.

Диски

Накопитель на жестких магнитных дисках содержит несколько дисков (пластин). На протяжении многих лет жесткие диски для ПК выпускались в нескольких формфакторах. Как правило, физические размеры жестких дисков выражаются в размере используемых пластин. Основные размеры пластин, используемых в жестких дисках ПК, приведены в таблице.

Существуют также накопители с дисками больших размеров, например 8 дюймов, 14 дюймов и даже больше, но, как правило, эти устройства в ПК не используются. Сейчас в настольных и некоторых портативных моделях чаще всего устанавливаются накопители формата 3,5 дюйма, а малогабаритные устройства (формата 2,5 дюйма и меньше) — в портативных системах.

В большинстве накопителей устанавливается минимум два диска, хотя в некоторых малых моделях бывает и по одному. Количество дисков ограничивается физическими размерами накопителя, а именно — высотой его корпуса. Самое большое количество дисков в накопителях формата 3,5 дюйма, с которым мне приходилось встречаться, — 12.

Раньше почти все диски производились из алюминиево-магниевого сплава, довольно прочного и легкого. Но со временем возникла потребность в накопителях, сочетающих малые размеры и большую емкость. Поэтому в качестве основного материала для дисков стало использоваться стекло, а точнее — композитный материал на основе стекла и керамики. Один из таких материалов называется MemCor и производится компанией Dow Corning. Он значительно прочнее, чем каждый из его компонентов в отдельности. Стеклянные диски отличаются большей прочностью и жесткостью, поэтому их можно сделать в два и более раз тоньше алюминиевых. Кроме того, они менее восприимчивы к перепадам температур, т.е. их размеры при нагреве и охлаждении изменяются весьма незначительно. Сегодня практически все жесткие диски выпускаются со стеклянными или стеклокерамическими пластинами.

Рабочий слой диска

тонким слоем вещества, способного сохранять остаточную намагниченность после воздействия внешнего магнитного поля. Этот слой называется рабочим или магнитным, и именно в нем сохраняется записанная информация. Самыми распространенными являются следующие типы рабочего слоя:

  • оксидный;
  • тонкопленочный;
  • двойной антиферромагнитный (AFC).

Оксидный слой

Оксидный слой представляет собой полимерное покрытие с наполнителем из окиси железа. Он наносится следующим образом. Сначала на поверхность быстро вращающегося алюминиевого диска разбрызгивается суспензия порошка оксида железа в растворе полимера. За счет действия центробежных сил она равномерно растекается по поверхности диска от его центра к внешнему краю. После полимеризации раствора поверхность шлифуется. Затем на нее наносится еще один слой чистого полимера, обладающего достаточной прочностью и низким коэффициентом трения, и диск окончательно полируется. Обычно толщина оксидного слоя — чуть больше 0,1 микрона. Если вам удастся заглянуть внутрь накопителя с такими дисками, то вы увидите, что они коричневого или желтого цвета.

Чем выше емкость накопителя, тем более тонким и гладким должен быть рабочий слой дисков. Но добиться качества покрытия, необходимого для накопителей большой емкости, в рамках традиционной технологии оказалось невозможным. Поскольку оксидный слой довольно мягкий, он крошится при “столкновениях” с головками (например, при случайных сотрясениях накопителя). Диски с таким рабочим слоем использовались с 1955 года; они так долго продержались благодаря простоте технологии и низкой стоимости. Однако в современных моделях накопителей они полностью уступили место тонкопленочным дискам.

Тонкопленочный слой

тия гораздо выше, чем у оксидного. Эта технология легла в основу производства накопителей нового поколения, в которых удалось существенно уменьшить величину зазора между головками и поверхностями дисков, что позволило повысить плотность записи.

Термин тонкопленочный рабочий слой очень удачен, так как это покрытие гораздо тоньше, чем оксидное. Этот слой называют также гальванизированным или напыленным, поскольку наносить тонкую пленку на поверхность дисков можно поразному.

Тонкопленочный гальванизированный рабочий слой получают путем электролиза. Это происходит почти так же, как при хромировании бампера автомобиля. Алюминиевую или стеклянную подложку диска последовательно погружают в ванны с различными растворами, в результате чего она покрывается несколькими слоями металлической пленки. Рабочим слоем служит слой из сплава кобальта толщиной всего около 1 микродюйма (около 0,025 мкм).

Метод напыления рабочего слоя заимствован из полупроводниковой технологии. Суть его сводится к тому, что в специальных вакуумных камерах вещества и сплавы вначале переводятся в газообразное состояние, а затем осаждаются на подложку. На алюминиевый диск сначала наносится слой фосфорита никеля, а затем магнитный кобальтовый сплав. Его толщина при этом — всего 1–2 микродюйма (0,025–0,05 мкм). Аналогично поверх магнитного слоя на диск наносится очень тонкое (порядка 0,025 мкм) углеродное защитное покрытие, обладающее исключительной прочностью. Это самый дорогостоящий процесс из всех описанных выше, так как для его проведения необходимы условия, приближенные к полному вакууму.

Как уже отмечалось, толщина магнитного слоя, полученного методом напыления, составляет около 0,025 мкм. Его исключительно гладкая поверхность позволяет сделать зазор между головками и поверхностями дисков гораздо меньшим, чем это было возможно раньше (0,076 мкм). Чем ближе к поверхности рабочего слоя располагается головка, тем выше плотность расположения зон смены знака на дорожке записи и, следовательно, плотность диска. Кроме того, при увеличении напряженности магнитного поля по мере приближения головки к магнитному слою увеличивается амплитуда сигнала; в результате соотношение “сигнал– шум” становится более благоприятным.

И при гальваническом осаждении, и при напылении рабочий слой получается очень тонким и прочным. Поэтому вероятность “выживания” головок и дисков в случае их контакта друг с другом на большой скорости существенно повышается. И действительно, современные накопители с дисками, имеющими тонкопленочные рабочие слои, практически не выходят из строя при вибрациях и сотрясениях. Оксидные покрытия в этом отношении гораздо менее надежны. Если бы вы смогли заглянуть внутрь корпуса накопителя, то увидели бы, что тонкопленочные покрытия дисков напоминают серебристую поверхность зеркал.

Двойной антиферромагнитный слой

Последним достижением в технологии изготовления носителей жестких дисков является использование двойных антиферромагнитных слоев (AFC), позволяющих существенно увеличить плотность рабочего слоя, превысив наложенные ранее ограничения. Увеличение плотности материала дает возможность уменьшить толщину магнитного слоя диска. Плотность записи жестких дисков (которая выражается в количестве дорожек на дюйм или в числе битов на дюйм) достигла той точки, в которой кристаллы магнитного слоя, используемые для хранения данных, становятся настолько малы, что это приводит к их нестабильности и как следствие — к низкой надежности запоминающего устройства. Границы плотности, получившие название суперпарамагнитного ограничения, должны находиться в пределах 30– 50 Гбит/дюйм2. С развитием технологии этот предел был преодолен и достиг 100 Гбит/дюйм2. Предполагается, что в будущем удастся достигнуть и поверхностной плотности записи в 200 Гбит/дюйм2, правда, при этом будут задействованы некоторые новые технологии.

Носители AFC состоят из двух магнитных слоев, разделенных исключительно тонкой пленкой металлического рутения, толщина которой — всего 3 атома (6 ангстрем). Подобная многослойная конструкция образует антиферромагнитное соединение, состоящее из верхнего и нижнего магнитных слоев, что позволяет различать эти слои по всей видимой высоте жесткого диска. Такая конструкция дает возможность использовать физически более толстые магнитные слои, имеющие более устойчивые кристаллы большого размера, благодаря чему носители могут функционировать как одинарный слой, отличающийся гораздо меньшей общей толщиной.

В 2001 году IBM использовала технологию AFC при создании целой серии 2,5-дюймовых накопителей Travelstar 30GN для портативных компьютеров; жесткие диски этого типа стали первыми накопителями с рабочим слоем AFC, появившимися на рынке. Кроме того, IBM начала создавать 3,5-дюймовые накопители с рабочим слоем AFC, используемые в настольных компьютерах. Первым накопителем этого типа стал Deskstar 120 GXP. Сегодня носители AFC выпускаются компанией Hitachi Global Storage Technologies, которая поглотила подразделение жестких дисков компании IBM, а также ряд других крупных производителей этого типа носителей. Технология AFC позволяет преодолеть рубеж плотности в 100 Гбит/дюйм2, а в сочетании с перпендикулярной магнитной записью (PMR) отодвинуть его до 200 Гбит/дюйм2. Внешне носитель с покрытием AFC выглядит, как зеркало.

Головки чтения/записи

В накопителях на жестких дисках для каждой из сторон каждого диска предусмотрена собственная головка чтения/записи. Все головки смонтированы на общем подвижном каркасе и перемещаются одновременно.

Конструкция каркаса с головками довольно проста. Каждая головка установлена на конце рычага, закрепленного на пружине и слегка прижимающего ее к диску. Мало кто знает о том, что диск как бы зажат между парой головок (сверху и снизу). И если бы это не повлекло за собой никаких последствий, можно было бы провести небольшой эксперимент: открыть накопитель и приподнять пальцем верхнюю головку. Как только бы вы ее отпустили, она вернулась бы в первоначальное положение (то же самое произошло бы и с нижней головкой).

На рисунке показана стандартная конструкция механизма привода головок с подвижной катушкой.

Головки чтения/записи и поворотный привод с подвижной катушкой

Когда накопитель выключен, головки касаются дисков под действием пружин. При раскручивании дисков аэродинамическое давление под головками повышается, и они отрываются от рабочих поверхностей (“взлетают”). Когда диск вращается на полной скорости, зазор между ним и головками может составлять 0,5–5 микродюймов и даже больше.

В начале 1960-х годов величина зазора между диском и головками составляла 200–300 микродюймов; в современных накопителях она достигает 10 нм, или 0,4 микродюйма. Для обеспечения повышенной плотности записи в будущем физическое расстояние между головкой и дисковой пластиной будет продолжать уменьшаться; возможно, такие головки даже будут входить в прямой контакт с поверхностью диска. Естественно, для этого потребуются новые конструкции носителей и головок.

Внимание!

Именно поэтому сборка блоков HDA выполняется только в чистых помещениях, соответствующих требованиям класса 100 (или даже более высоким). Это означает, что в одном кубическом футе воздуха может присутствовать не более 100 пылинок размером до 0,5 мкм. Для сравнения: стоящий неподвижно человек каждую минуту выдыхает порядка 500 таких частиц! Поэтому помещения оснащаются специальными системами фильтрации и очистки воздуха. Блоки HDA можно вскрывать только в таких условиях.

Читать статью  Жесткий диск тормозит: загружен на 100%, всё зависает и медленно работает

Поддержка столь стерильных условий стоит немалых денег. Некоторые фирмы выпускают “чистые цеха” в настольном исполнении. Стоят они всего несколько тысяч долларов и выглядят, как большие ящики с прозрачными стенками, в которые вмонтированы перчатки для оператора. Прежде чем приступить к работе, оператор должен вставить в ящик устройство и все необходимые инструменты, затем закрыть ящик и включить систему фильтрации. Через
некоторое время можно будет начинать разборку и прочие операции с накопителем. Существуют и другие способы создания стерильных условий. Представьте себе, например, монтажный стол, отгороженный от окружающего пространства воздушной завесой, причем непосредственно на рабочее место под давлением постоянно подается очищенный воздух.

Это напоминает устанавливаемые на зиму в дверях магазинов “занавески” из горячего воздуха, которые не мешают покупателям, но и не позволяют теплу из помещения выйти наружу. Поскольку подобное оборудование стоит довольно дорого, за ремонт накопителей на жестких дисках обычно берутся только их производители.

Конструкции головок чтения/записи!
По мере развития технологии производства дисковых накопителей совершенствовались и конструкции головок чтения/записи. Первые головки представляли собой сердечники с обмоткой (электромагниты). По современным меркам их размеры были огромными, а плотность записи — чрезвычайно низкой. За прошедшие годы конструкции головок прошли долгий путь развития от первых головок с ферритовыми сердечниками до современных гигантских магниторезистивных моделей. Более подробно о различных конструкциях головок можно узнать из главы 8.

Механизмы привода головок

Пожалуй, еще более важной деталью накопителя, чем сами головки, является механизм, который устанавливает их в нужное положение; он называется приводом головок. Именно с его помощью головки перемещаются от центра к краям диска и устанавливаются на заданный цилиндр. Существует много конструкций механизмов привода головок, но их можно разделить на два основных типа:

Тип привода во многом определяет быстродействие и надежность накопителя, достоверность считывания данных, его температурную стабильность, чувствительность к выбору рабочего положения и вибрациям. Скажем сразу, что накопители с приводами на основе шаговых двигателей гораздо менее надежны, чем устройства с приводами от подвижных катушек.

Привод — самая важная деталь накопителя. В таблице показана зависимость характеристик накопителя на жестких дисках от конкретного типа привода.

Приводы с шаговым двигателем обычно использовались на жестких дисках емкостью до 100 Мбайт и менее, которые создавались в 1980-х и в начале 1990-х годов. Во всех накопителях, имеющих более высокую емкость, обычно используются приводы с подвижной катушкой. В накопителях на гибких дисках для перемещения головок используется привод с шаговым двигателем. Его параметров (в том числе и точности) вполне достаточно для дисководов этого типа, поскольку плотность дорожек записи на гибких дисках значительно ниже (135 дорожек на дюйм), чем в накопителях на жестких дисках (более 5000 дорожек на дюйм). большинстве выпускаемых сегодня накопителей устанавливаются приводы с подвижными катушками.

Привод с шаговым двигателем

Шаговый двигатель — это электродвигатель, ротор которого может поворачиваться только ступенчато, т.е. на строго определенный угол. Если покрутить его вал вручную, то можно услышать негромкие щелчки (или треск при быстром вращении), которые возникают всякий раз, когда ротор проходит очередное фиксированное положение.

Шаговые двигатели могут устанавливаться только в фиксированных положениях. Размеры этих двигателей невелики (порядка нескольких сантиметров), а форма может быть прямоугольной, цилиндрической и т.д. Шаговый двигатель устанавливается вне блока HDA, но его вал проходит внутрь через отверстие с герметизирующей прокладкой. Обычно двигатель располагается у одного из углов корпуса накопителя, и его можно легко узнать.

Одна из самых серьезных проблем механизма с шаговым двигателем — нестабильность температуры. При нагреве и охлаждении диски расширяются и сжимаются, в результате чего дорожки смещаются относительно своих прежних положений. Поскольку механизм привода головок не позволяет сдвинуть их на расстояние, меньшее одного шага (переход на одну дорожку), компенсировать погрешности температур невозможно. Головки перемещаются в соответствии с поданным на шаговый двигатель количеством импульсов.

Что такое жесткий диск

Жесткий диск – это устройство для записи, автономного хранения и считывания информации, используемой компьютером (сюда относится система Windows, сопутствующие ей программы). Также на нем хранятся документы, игры, видео, фото пользователя.

Что такое жесткий диск

Устройство жесткого диска

Конструкция устройства жесткого диска — стандартна. Основной элемент — диски, изготовленные из алюминия, керамики или стекла (их может быть от 1 до 10). В просторечии они иногда называются пластинами или блинами. Диски покрыты тонким слоем ферромагнитного вещества, который и делает возможным запись и хранение информации. Для защиты слоя его сверху покрывают одним или (в дорогих моделях) несколькими слоями разного состава.

Блины надеты на подвижную ось (шпиндель), и зафиксированы сверху прижимным кольцом. Необходимые зазоры между дисками обеспечивают разделительные кольца, изготовляемые из полимеров или немагнитных сплавов. Кроме колец, между дисками находятся пластиковые или алюминиевые подковообразные пластины-сепараторы. Их назначение — оптимизация воздушных потоков внутри гермозоны и снижение уровня сопутствующих шумов. Считается, что алюминиевые сепараторы лучше справляются с задачей (они заодно охлаждают разогретый вращающимися дисками воздух).

Внутри корпуса находится двигатель, который раскручивает шпиндель и разгоняет до нужной скорости диски. Он управляется и питается через контактную площадку.

Для каждой «рабочей» поверхности диска есть одна (и только одна) магнитная головка, которая крепится на так называемом слайдере. Миниатюрная пластинка (слайдер) позволяет головке «планировать» над поверхностью диска. Слайдер крепится на пружинной подвеске. Несколько головок соединяются в блок (БМГ). Он установлен на кронштейне, в просторечии — «коромысле» с помощью подшипника, обеспечивающего их плавное перемещение. Конструкцию двигает привод БМГ, состоящий из катушки и двух мощных магнитов. Движение контролируют два ограничителя БМГ. Фиксатор обеспечивает неподвижность головок в зоне парковки.

Ток, поступающий с головок, настолько слаб, что для его усиления прямо на БМГ расположен чип, называемый предусилителем. Как понятно уже из названия, он усиливает сигнал (который сам не дойдет до платы управления, затухнув в пути) и посылает его через кабель на контактную площадку.

Устройство жесткого диска

Все вышеописанное помещается в металлический корпус — короб, наглухо закрытый крышкой с резиновой прокладкой. Открывать его следует только в исключительных случаях — сбить тонкую настройку внутренних элементов винчестера очень легко.

Корпус называется гермоблоком («банкой» на профессиональном жаргоне). Иногда так называют емкость со всем содержимым. Короб не является полностью герметичным и имеет небольшое отверстие для выравнивания давления. Поскольку для правильного функционирования жесткого диска необходим очень чистый воздух, отверстие закрыто многослойным фильтром. Часто в фильтр добавляют силикагель — это помогает регулировать влажность внутри гермозоны.

Другой фильтр, называемый циркуляционным, расположен на пути воздушных потоков и собирает микроскопические частицы металла и смазки, неизбежно образующиеся в процессе работы любого, даже самого тонкого, устройства.

На внешней стороне корпуса находится плата управления, координирующая работу винчестера. Посредине платы находится процессор, который иногда еще называют микроконтроллером. Новые модели, как правило, состоят из двух частей: самого процессора, выполняющего необходимые расчеты и устройства чтения и записи. Устройство (или по-другому «канал») получая сигнал с головок, преобразует его в двоичный код. В режиме записи оно наоборот, превращает данные в аналоговый код. Процессор также управляет другими компонентами платы через порты ввода и вывода. С начинкой гермозоны он сообщается через контактную площадку.

Здесь же находится стандартный чип памяти, часть которой занята прошивкой. Следующий чип — контроллер, управляет двигателем, вращающим шпиндель с дисками, и блоком головок. Он также контролирует расположенные на плате источники питания, которые поставляют энергию процессору.

На плате установлена автономная флэш-память (в ней находится часть прошивки). После включения компьютера контроллер загружает ее и начинает выполнять полученные команды.

Датчики вибрации (на плате их может быть от двух и больше), улавливают сотрясения и передают данные контроллеру. Последний должен немедленно остановить диски и вернуть головки на парковочное место. Увы, помогает не всегда.

Другое, более надежное защитное устройство на плате — ограничитель напряжения. При его перепадах жертвует собой и сгорает.

Как работает жесткий диск

Как работает жесткий диск

Рассмотрим детальнее особенности, как работает жесткий диск.

После включения контроллер загружает из флэш-памяти часть хранящейся там информации. Обработав ее, отдает приказ о запуске двигателя в гермозоне. Движок раскручивает до нужной скорости шпиндель и закрепленные на нем диски. Когда над блинами образуется достаточно сильный поток воздуха, контроллер дает команду о перемещении блока головок, которые зависают на высоте 10 нанометров над их поверхностью. «Полет» регулируется слайдерами и пружинными подвесками.

Работа головок начинается со считывания информации о состоянии диска с «нулевой дорожки». Если диск серьезно поврежден, винчестер не запустится. После проверки начинается обработка данных.

В режиме записи каждая головка генерирует электромагнитное поле, изменяющее вектор намагниченности на ферромагнитном покрытии диска. Считывая информацию, головка улавливает изменение в магнитном поле и передает соответствующие сигналы в предусилитель. Оттуда они попадают на контактную пластину, далее — в процессор, где и расшифровываются.

После завершения работы диски перестают вращаться, а головки выводятся в парковочную зону. Обычно так называется внешний край блинов. В некоторых моделях роль парковки выполняют специальные пластины вне дисков.

Виды жестких дисков

Виды жестких дисков

Рассмотрим детальнее основные виды жестких дисков.

HHD. Информация, поступающий на винчестер, записывается на диски, покрытые слоем ферромагнитного вещества. Устройство выгодно отличает дешевизна и большой объем памяти.

Виды жестких дисков

SSD. В отличии от магнитных жестких дисков, SSD работает по принципу заполнения микросхем памяти. Плюсы: надежность, ударопрочность, бесшумность, низкое энергопотребление, очень высокая скорость передачи информации. Недостатки: высокая цена, ограниченное количество циклов записи, удаленная информация не восстанавливается.

Форм-фактор

Жесткие диски обычно делят на две категории в зависимости от диаметра:

  • 3,5 дюйма — устанавливается в домашних компьютерах и обладает относительно большой памятью (до 10 Тб);
  • 2,5 дюйма — применяется в ноутбуках, медиаплеерах, портативных внешних дисках.

Преимущества: малый диаметр, быстродействие, экономное потребление энергии.

Недостаток: скромный объем памяти.

Интерфейс

Существует три вида разъемов для подключения винчестера к материнской плате на родном или постороннем компьютере.

IDE. Устройства подключаются через шлейф, причем передача идет в одном направлении (параллельно), менять его приходится вручную, переключая перемычки на шлейфе. Имеет слабую пропускную способность (133 Мб/сек).

SATA. Относительно новый интерфейс. Быстрее подключается (отдельным шлейфом) просто настраивается. Обмен информацией значительно быстрее. Диски с таким интерфейсом потребляют меньше энергии.

SCSI. Диски похожи на собратьев с интерфейсом IDE, но вращаются на большей скорости (до 15 000 оборотов). Это убыстряет получение данных, увеличивая также риск поломки. Диски этого типа имеют дополнительный контролер, управляющий обменом информации.

Внешний жесткий диск

Внешний жесткий диск

Внешний жесткий диск — это переносное устройство для хранения информации, подключаемое к компьютеру через USB, USB-C или же при помощи более современных и скоростных интерфейсов (eeSATA, Fire-Vire, Thunderbolt). Представляет собой собственно хранитель информации в комплекте с платой-переходником и источником питания. Защищен пластиковым или металлическим корпусом.

Внешние жесткие диски предназначены для:

  • очистки компьютера от ненужных в данное время файлов;
  • разгрузки оперативной памяти;
  • долгосрочное хранения информации;
  • переноса больших объемов информации между устройствами.
Читать статью  Администрирование систем Linux. Разделы жестких дисков

Характеристики жесткого диска

Характеристики жесткого диска

Рассмотрим основные характеристики жесткого диска детальнее.

Размер. Имеет значение для внутренних дисков. В ПК ставятся HDD диаметром 3,5, в ноутбуках — 2,5 дюйма.

Тип разъема. Определяет скорость передачи информации с винчестера на материнскую плату и наоборот. Сейчас широко используется стандарт SATA. Для переносных дисков обычно подходит разъем USB.

Память. Минимальный объем выпускаемых сейчас дисков — 500 Гб, максимальный — 14 Тб.

Скорость. Количество оборотов шпинделя в секунду определяет время, за которое система находит и обрабатывает информацию. SSD

Время доступа. Те несколько миллисекунд, за которые головка находит свое место над диском и начинает считывать или записывать информацию. Измеряется среднее время.

Оперативная память. Зарезервирована для выполнения необходимых операций, основные из них — поиск, чтение и запись информации.

Уровень шума. Звуки, которые издает винчестер во время работы, измеряются в децибелах. Естественно, подержанный диск «гудит» громче, чем новый.

Надежность. Количество часов, которое может проработать диск без выключения. Трудно проверяемая величина, приходится верить разработчикам на слово.

Сопротивляемость. Способность жесткого диска не ломаться под воздействием давления и ударов. Измеряется во включенном, а затем в выключенном состоянии.

Почему жесткий диск называют винчестером

Согласно наиболее распространенной версии, жесткий диск называют винчестером, благодаря инженерам компании IBM, впервые выпустившей устройство современного типа (пластины и считывающие головки в герметическом корпусе). В разговорах между собой разработчики называли испытательную модель «30-30» — подразумевая конструкцию из двух модулей по 30 MB. Кеннет Хотон, руководивший проектом, в шутку назвал новый диск «винчестером» из-за аналогии с винтовочным патроном 30-30 Winchester, соответствующей фирмы. Патрон в свое время произвел революцию в оружейном деле, превзойдя по характеристикам все аналоги (именно благодаря ему бледнолицые сумели завоевать прерии).

Диск стал столь же популярен за счет быстродействия и низкой цены: в изобретении IBM, в отличии от дисков других фирм, магнитные головки не выводились за диски после окончания работы. Это ускорило их работу, упростило и удешевило привод головок, сам диск стал компактнее.

Фирма на этом не остановилась: новые технологии позволили отказаться от съемных дисков, их стационарные аналоги оказались проще, надежнее и дешевле. Стандартные (в то время) магнитные диски 14 дюймов в диаметре были заменены на «блины» в 8, затем 5 1/4 дюйма. Последние были использованы во входящих в моду персональных компьютерах.

Изначально такие диски стоили дорого и устанавливались как дополнительное внешнее устройство для самых топовых моделей ПК, но фирмы-производители сумели добиться значительного удешевления винчестера. Уже в начале девяностых он встраивается в каждый компьютер.

Череда усовершенствований и бурная деятельность IBM на рынке ПК привела к тому, что название «винчестер» вошло в обиход пользователей, На Западе оно не прижилось и вышло из употребления еще в прошлом веке, но пришлось по душе жителям СНГ. Оно используется как в технической литературе, так и в сленге программистов. Последние несколько сократили термин: теперь жесткий диск в народе именуют «винт», «винч», или по-свойски — «веник».

Производители жестких дисков

Список производителей жестких дисков более чем скромен. Сейчас на рынке представлена продукция лишь 3 компаний: Toshiba, WD, Seagate. Остальные (а их было свыше 200) отказались от невыгодного производства, влились в состав других фирм или разорились.

Производители жестких дисков

Toshiba — старая и уважаемая фирма. Почти все выпускаемые ею жесткие диски предназначены для домашних ПК и отличаются хорошим качеством. Сделав ставку на массовое производство, компания сумела снизить цены и оторваться от конкурентов. Ее продукция — хороший выбор для недорогих компьютеров.

Производители жестких дисков

Seagate — американская фирма, рабочие мощности которой перенесены в Таиланд и Китай. На качестве сборки это не отразилось. Плюсом жестких дисков компании является более высокая скорость записи и считывания информации. Цены в среднем выше, чем у конкурентов.

Производители жестких дисков

WD — компания из Калифорнии, конструкторские бюро которой находится в солнечном штате, а заводы — по всему миру. После поглощения Hitachi стала лидером отрасли. Получив в результате слияния дополнительные мощности, компания начала производить сразу несколько дополнительных линеек (в настоящее время их 6). Наибольшей популярностью пользуются недорогие диски серии Blue, предназначенные для офисных и домашних компьютеров.

Как выбрать жесткий диск

Как выбрать жесткий диск

Перед покупкой стоит вспомнить о функциях вашего компьютера. Если ПК используется лишь для работы с офисными документами и вечерних просмотров фильмов, достаточно выбрать жесткий диск с минимальным объемом памяти (сейчас это 500 Гб). О быстродействии диска тоже можно не беспокоиться.

Если пользователь привык скачивать игры и фильмы из интернета, ему понадобится диск до 1 Тб. Настоящим геймерам и киноманам даже этого может оказаться недостаточно.

Перед приобретением «объемного», а значит, дорогого диска лучше убедиться в возможностях BIOS. Без расширения UEFI он просто не видит диски емкостью свыше 2 Тб.

Игроманам и специалистам, работающим с графическими и видеофайлами, стоит обратить внимание на скорость обработки информации (в технических характеристиках эти данные не указывается, но их результаты тестирования можно найти в интернете). Возможно, что в погоне за скоростью придется перейти с привычного магнитного на гораздо более дорогой, но «шустрый» SSD.

Неисправности жесткого диска

Неисправности жесткого диска

Случайное или ошибочное форматирование дисков, повреждения файловой системы, повреждение разделов в диске относят к логическим ошибкам. Такие неисправности жесткого диска «лечатся» программными методами и нет необходимости вмешиваться в устройство винчестера.

Аппаратные сбои требуют ремонта внутренних элементов и не всегда есть гарантия успеха.

Повреждение поверхности диска. Могут быть результатом износа либо ударов головки о поверхность, попадания на диск частиц пыли после разгерметизации корпуса. Чтение информации обычным способом с таких участков невозможно. Существует вероятность разрушения головки из-за трения и последующего перегрева. Ремонт невозможен, можно попытаться считать информацию при помощи специальных программ и перенести на резервный носитель.

Неисправность контроллера. Обычно является следствием короткого замыкания из-за попадания на поверхность платы влаги или пыли. Ремонтируется перепайкой части контактов, заменой поврежденных микросхем или самой платы.

Неисправности двигателя. Основных причин две: повреждение обмоток вращающего шпиндель двигателя и заклинивание самого шпинделя. В первом случае есть возможность заменить двигатель без разбалансировки дисков. Во втором — пытаются расклинить вал, что получается не всегда. В случае неудачи диски перемещают в донорский корпус, после чего могут возникнуть проблемы с балансировкой.

Неисправности головок. Иногда при внезапном выключении напряжения головки не успевают уйти в парковочную зону и опускаются на диск. Его поверхность и слайдеры «слипаются» и при повторном включении диск не запустится. Для отделения головок существуют специальные съемники. После операции на поверхности диска остаются нечитаемые «пятна», а сами головки могут быть повреждены.

Причиной разрушения головок могут быть удары о поверхность диска, попадание между головкой и диском частиц пыли, сильное сотрясение. В случае поломки одной или нескольких головок проводится попытка считывания информации при помощи оставшихся. Таким способом возможно восстановить от 20 до 70% объема памяти. Метод подходит для считывания лишь небольших файлов.

Причиной выхода из строя всего блока головок чаще всего становится сгорание предусилителя. Для восстановления памяти проводится пересадка ББМБМГ. Процедура ювелирная и дорогая.

Жесткий диск: принцип работы и основные характеристики

Жесткие диски, или, как их еще называют, винчестеры, являются одной из самых главных составляющих компьютерной системы. Об это знают все. Но вот далеко не каждый современный пользователь даже в принципе догадывается о том, как функционирует жесткий диск. Принцип работы, в общем-то, для базового понимания достаточно несложен, однако тут есть свои нюансы, о которых далее и пойдет речь.

Вопросы предназначения и классификации жестких дисков?

Вопрос предназначения, конечно, риторический. Любой пользователь, пусть даже самого начального уровня, сразу же ответит, что винчестер (он же жесткий диск, он же Hard Drive или HDD) сразу же ответит, что он служит для хранения информации.

жесткий диск принцип работы

В общем и целом верно. Не стоит забывать, что на жестком диске, кроме операционной системы и пользовательских файлов, имеются созданные ОС загрузочные секторы, благодаря которым она и стартует, а также некие метки, по которым на диске можно быстро найти нужную информацию.

Современные модели достаточно разнообразны: обычные HDD, внешние жесткие диски, высокоскоростные твердотельные накопители SSD, хотя их именно к жестким дискам относить и не принято. Далее предлагается рассмотреть устройство и принцип работы жесткого диска, если не в полном объеме, то, по крайней мере, в таком, чтобы хватило для понимания основных терминов и процессов.

Обратите внимание, что существует и специальная классификация современных HDD по некоторым основным критериям, среди которых можно выделить следующие:

  • способ хранения информации;
  • тип носителя;
  • способ организации доступа к информации.

Почему жесткий диск называют винчестером?

Сегодня многие пользователи задумываются над тем, почему жесткие диски называют винчестерами, относящимися к стрелковому оружию. Казалось бы, что может быть общего между этими двумя устройствами?

принцип работы жесткого диска

Сам термин появился еще в далеком 1973 году, когда на рынке появился первый в мире HDD, конструкция которого состояла из двух отдельных отсеков в одном герметичном контейнере. Емкость каждого отсека составляла 30 Мб, из-за чего инженеры дали диску кодовое название «30-30», что было в полной мере созвучно с маркой популярного в то время ружья «30-30 Winchester». Правда, в начале 90-х в Америке и Европе это название практически вышло из употребления, однако до сих пор остается популярным на постсоветском пространстве.

Устройство и принцип работы жесткого диска

Но мы отвлеклись. Принцип работы жесткого диска кратко можно описать как процессы считывания или записи информации. Но как это происходит? Для того чтобы понять принцип работы магнитного жесткого диска, в первую очередь необходимо изучить, как он устроен.

устройство и принцип работы жесткого диска

Сам жесткий диск представляет собой набор пластин, количество которых может колебаться от четырех до девяти, соединенных между собой валом (осью), называемым шпинделем. Пластины располагаются одна над другой. Чаще всего материалом для их изготовления служат алюминий, латунь, керамика, стекло и т. д. Сами же пластины имеют специальное магнитное покрытие в виде материала, называемого платтером, на основе гамма-феррит-оксида, окиси хрома, феррита бария и т. д. Каждая такая пластина по толщине составляет около 2 мм.

За запись и чтение информации отвечают радиальные головки (по одной на каждую пластину), а в пластинах используются обе поверхности. За вращение шпинделя, скорость которого может составлять от 3600 до 7200 об./мин, и перемещение головок отвечают два электрических двигателя.

принцип работы жесткого диска кратко

При этом основной принцип работы жесткого диска компьютера состоит в том, что информация записывается не куда попало, а в строго определенные локации, называемые секторами, которые расположены на концентрических дорожках или треках. Чтобы не было путаницы, применяются единые правила. Имеется ввиду, что принципы работы накопителей на жестких дисках, с точки зрения их логической структуры, универсальны. Так, например, размер одного сектора, принятый за единый стандарт во всем мире, составляет 512 байт. В свою очередь секторы делятся на кластеры, представляющие собой последовательности рядом находящихся секторов. И особенности принципа работы жесткого диска в этом отношении состоят в том, что обмен информацией как раз и производится целыми кластерами (целым числом цепочек секторов).

Читать статью  Что такое буферная память жесткого диска: на что влияет и какая лучше?

Но как же происходит считывание информации? Принципы работы накопителя на жестких магнитных дисках выглядят следующим образом: с помощью специального кронштейна считывающая головка в радиальном (спиралевидном) направлении перемещается на нужную дорожку и при повороте позиционируется над заданным сектором, причем все головки могут перемещаться одновременно, считывая одинаковую информацию не только с разных дорожек, но и с разных дисков (пластин). Все дорожки с одинаковыми порядковыми номерами принято называть цилиндрами.

При этом можно выделить еще один принцип работы жесткого диска: чем ближе считывающая головка к магнитной поверхности (но не касается ее), тем выше плотность записи.

Как осуществляется запись и чтение информации?

Жесткие диски, или винчестеры, потому и были названы магнитными, что в них используются законы физики магнетизма, сформулированные еще Фарадеем и Максвеллом.

Как уже говорилось, на пластины из немагниточувствительного материала наносится магнитное покрытие, толщина которого составляет всего лишь несколько микрометров. В процессе работы возникает магнитное поле, имеющее так называемую доменную структуру.

Магнитный домен представляет собой строго ограниченную границами намагниченную область ферросплава. Далее принцип работы жесткого диска кратко можно описать так: при возникновении воздействия внешнего магнитного поля, собственное поле диска начинает ориентироваться строго вдоль магнитных линий, а при прекращении воздействия на дисках появляются зоны остаточной намагниченности, в которой и сохраняется информация, которая ранее содержалась в основном поле.

За создание внешнего поля при записи отвечает считывающая головка, а при чтении зона остаточной намагниченности, оказавшись напротив головки, создает электродвижущую силу или ЭДС. Далее все просто: изменение ЭДС соответствует единице в двоичном коде, а его отсутствие или прекращение – нулю. Время изменения ЭДС принято называть битовым элементом.

Кроме того, магнитную поверхность чисто из соображений информатики можно ассоциировать, как некую точечную последовательность битов информации. Но, поскольку местоположение таких точек абсолютно точно вычислить невозможно, на диске нужно установить какие-то заранее предусмотренные метки, которые помогли определить нужную локацию. Создание таких меток называется форматированием (грубо говоря, разбивка диска на дорожки и секторы, объединенные в кластеры).

Логическая структура и принцип работы жесткого диска с точки зрения форматирования

Что касается логической организации HDD, здесь на первое место выходит именно форматирование, в котором различают два основных типа: низкоуровневое (физическое) и высокоуровневое (логическое). Без этих этапов ни о каком приведении жесткого диска в рабочее состояние говорить не приходится. О том, как инициализировать новый винчестер, будет сказано отдельно.

жесткий диск принцип работы и основные характеристики

Низкоуровневое форматирование предполагает физическое воздействие на поверхность HDD, при котором создаются секторы, расположенные вдоль дорожек. Любопытно, что принцип работы жесткого диска таков, что каждый созданный сектор имеет свой уникальный адрес, включающий в себя номер самого сектора, номер дорожки, на которой он располагается, и номер стороны пластины. Таким образом, при организации прямого доступа та же оперативная память обращается непосредственно по заданному адресу, а не ищет нужную информацию по всей поверхности, за счет чего и достигается быстродействие (хотя это и не самое главное). Обратите внимание, что при выполнении низкоуровневого форматирования стирается абсолютно вся информация, и восстановлению она в большинстве случаев не подлежит.

жесткий диск принцип работы и характеристики

Другое дело — логическое форматирование (в Windows-системах это быстрое форматирование или Quick format). Кроме того, эти процессы применимы и к созданию логических разделов, представляющих собой некую область основного жесткого диска, работающую по тем же принципам.

Логическое форматирование, прежде всего, затрагивает системную область, которая состоит из загрузочного сектора и таблиц разделов (загрузочная запись Boot record), таблицы размещения файлов (FAT, NTFS и т. д.) и корневого каталога (Root Directory).

Запись информации в секторы производится через кластер несколькими частями, причем в одном кластере не может содержаться два одинаковых объекта (файла). Собственно, создание логического раздела, как бы отделяет его от основного системного раздела, вследствие чего информация, на нем хранимая, при появлении ошибок и сбоев изменению или удалению не подвержена.

Основные характеристики HDD

Думается, в общих чертах принцип работы жесткого диска немного понятен. Теперь перейдем к основным характеристикам, которые и дают полное представление обо всех возможностях (или недостатках) современных винчестеров.

Принцип работы жесткого диска и основные характеристики могут быть совершенно разными. Чтобы понять, о чем идет речь, выделим самые основные параметры, которыми характеризуются все известные на сегодня накопители информации:

  • емкость (объем);
  • быстродействие (скорость доступа к данным, чтение и запись информации);
  • интерфейс (способ подключения, тип контроллера).

Емкость представляет собой общее количество информации, которая может быть записана и сохранена на винчестере. Индустрия по производству HDD развивается так быстро, что сегодня в обиход вошли уже жесткие диски с объемами порядка 2 Тб и выше. И, как считается, это еще не предел.

Интерфейс – самая значимая характеристика. Она определяет, каким именно способом устройство подключается к материнской плате, какой именно контроллер используется, как осуществляется чтение и запись и т. д. Основными и самыми распространенными интерфейсами считаются IDE, SATA и SCSI.

Диски с IDE-интерфейсом отличаются невысокой стоимостью, однако среди главных недостатков можно выделить ограниченное количество одновременно подключаемых устройств (максимум четыре) и невысокую скорость передачи данных (причем даже при условии поддержки прямого доступа к памяти Ultra DMA или протоколов Ultra ATA (Mode 2 и Mode 4). Хотя, как считается, их применение позволяет повысить скорость чтения/записи до уровня 16 Мб/с, но в реальности скорость намного ниже. Кроме того, для использования режима UDMA требуется установка специального драйвера, который, по идее, должен поставляться в комплекте с материнской платой.

Говоря о том, что собой представляет принцип работы жесткого диска и характеристики, нельзя обойти стороной и интерфейс SATA, который является наследником версии IDE ATA. Преимущество данной технологии состоит в том, что скорость чтения/записи можно повысить до 100 Мб/с за счет применения высокоскоростной шины Fireware IEEE-1394.

принцип работы жесткого диска компьютера

Наконец, интерфейс SCSI по сравнению с двумя предыдущими является наиболее гибким и самым скоростным (скорость записи/чтения достигает 160 Мб/с и выше). Но и стоят такие винчестеры практически в два раза дороже. Зато количество одновременно подключаемых устройств хранения информации составляет от семи до пятнадцати, подключение можно осуществлять без обесточивания компьютера, а длина кабеля может составлять порядка 15-30 метров. Собственно, этот тип HDD большей частью применяется не в пользовательских ПК, а на серверах.

Быстродействие, характеризующее скорость передачи и пропускную способность ввода/вывода, обычно выражается временем передачи и объемом передаваемых расположенных последовательно данных и выражается в Мб/с.

Некоторые дополнительные параметры

Говоря о том, что представляет собой принцип работы жесткого диска и какие параметры влияют на его функционирование, нельзя обойти стороной и некоторые дополнительные характеристики, от которых может зависеть быстродействие или даже срок эксплуатации устройства.

Здесь на первом месте оказывается скорость вращения, которая напрямую влияет на время поиска и инициализации (распознавания) нужного сектора. Это так называемое скрытое время поиска – интервал, в течение которого необходимый сектор поворачивается к считывающей головке. Сегодня принято несколько стандартов для скорости вращения шпинделя, выраженной в оборотах в минуту со временем задержки в миллисекундах:

  • 3600 – 8,33;
  • 4500 – 6,67;
  • 5400 – 5,56;
  • 7200 – 4,17.

Нетрудно заметить, что чем выше скорость, тем меньшее время затрачивается на поиск секторов, а в физическом плане – на оборот диска до установки для головки нужной точки позиционирования пластины.

Еще один параметр – внутренняя скорость передачи. На внешних дорожках она минимальна, но увеличивается при постепенном переходе на внутренние дорожки. Таким образом, тот же процесс дефрагментации, представляющий собой перемещение часто используемых данных в самые быстрые области диска, — не что иное, как перенос их на внутреннюю дорожку с большей скоростью чтения. Внешняя скорость имеет фиксированные значения и напрямую зависит от используемого интерфейса.

Наконец, один из важных моментов связан с наличием у жесткого диска собственной кэш-памяти или буфера. По сути, принцип работы жесткого диска в плане использования буфера в чем-то похож на оперативную или виртуальную память. Чем больше объем кэш-памяти (128-256 Кб), тем быстрее будет работать жесткий диск.

Главные требования к HDD

Основных требований, которые в большинстве случаев предъявляются жестким дискам, не так уж и много. Главное – длительный срок службы и надежность.

Основным стандартом для большинства HDD считается срок службы порядка 5-7 лет со временем наработки не менее пятисот тысяч часов, но для винчестеров высокого класса этот показатель составляет не менее миллиона часов.

Что касается надежности, за это отвечает функция самотестирования S.M.A.R.T., которая следит за состоянием отдельных элементов жесткого диска, осуществляя постоянный мониторинг. На основе собранных данных может формироваться даже некий прогноз появления возможных неисправностей в дальнейшем.

Само собой разумеется, что и пользователь не должен оставаться в стороне. Так, например, при работе с HDD крайне важно соблюдать оптимальный температурный режим (0 – 50 ± 10 градусов Цельсия), избегать встрясок, ударов и падений винчестера, попадания в него пыли или других мелких частиц и т. д. Кстати сказать, многим будет интересно узнать, что те же частицы табачного дыма примерно в два раза больше расстояния между считывающей головкой и магнитной поверхностью винчестера, а человеческого волоса – в 5-10 раз.

Вопросы инициализации в системе при замене винчестера

Теперь несколько слов о том, какие действия нужно предпринять, если по каким-то причинам пользователь менял жесткий диск или устанавливал дполнительный.

логическая структура и принцип работы жесткого диска

Полностью описывать это процесс не будем, а остановимся только на основных этапах. Сначала винчестер необходимо подключить и посмотреть в настройках BIOS, определилось ли новое оборудование, в разделе администрирования дисков произвести инициализацию и создать загрузочную запись, создать простой том, присвоить ему идентификатор (литеру) и выполнить форматирование с выбором файловой системы. Только после этого новый «винт» будет полностью готов к работе.

Заключение

Вот, собственно, и все, что вкратце касается основ функционирования и характеристик современных винчестеров. Принцип работы внешнего жесткого диска здесь не рассматривался принципиально, поскольку он практически ничем не отличается от того, что используется для стационарных HDD. Единственная разница состоит только в методе подключения дополнительного накопителя к компьютеру или ноутбуку. Наиболее распространенным является соединение через USB-интерфейс, который напрямую соединен с материнской платой. При этом, если хотите обеспечить максимальное быстродействие, лучше использовать стандарт USB 3.0 (порт внутри окрашен в синий цвет), естественно, при условии того, что и сам внешний HDD его поддерживает.

В остальном же, думается, многим хоть немного стало понятно, как функционирует жесткий диск любого типа. Быть может, выше было приведено слишком много технической информации, тем более даже из школьного курса физики, тем не менее без этого в полной мере понять все основные принципы и методы, заложенные в технологиях производства и применения HDD, понять не получится.

Источник http://perscom.ru/2012-02-27-19-40-33/67-komponenti-hdd

Источник https://znatoki.org/tehnika/54-chto-takoe-zhestkij-disk.html

Источник https://fb.ru/article/324729/jestkiy-disk-printsip-rabotyi-i-osnovnyie-harakteristiki

Добавить комментарий

Ваш адрес email не будет опубликован.